The Polynomial Time Hierarchy Collapses If the Boolean Hierarchy Collapses
نویسندگان
چکیده
منابع مشابه
Computing Solutions Uniquely collapses the Polynomial Hierarchy
Is there an NP function that, when given a satissable formula as input, outputs one satisfying assignment uniquely? That is, can a nondeterministic function cull just one satisfying assignment from a possibly exponentially large collection of assignments? We show that if there is such a nondeterministic function, then the polynomial hierarchy collapses to ZPP NP (and thus, in particular, to NP ...
متن کاملThe Log Space Oracle Hierarchy Collapses DRAFT
The polynomial time hierarchy of Meyer and Stockmeyer has several equivalent characterizations — in particular it can be defined either in terms of polynomial time oracle Turing machines [Sto76], or in terms of polynomial time alternating Turing machines where the number of alternations is finitely bounded [CKS81]. One of the most important open questions in the area is whether or not this hier...
متن کاملPolylogarithmic-round Interactive Proofs for coNP Collapses the Exponential Hierarchy
It is known [BHZ87] that if every language in coNP has a constant-round interactive proof system, then the polynomial hierarchy collapses. On the other hand, Lund et al. [LFKN92] have shown that #SAT, the #P-complete function that outputs the number of satisfying assignments of a Boolean formula, can be computed by a linear-round interactive protocol. As a consequence, the coNP-complete set SAT...
متن کاملEvery polynomial-time 1-degree collapses if and only if P = PSPACE
A set A is m-reducible (or Karp-reducible) to B if and only if there is a polynomial-time computable function f such that, for all x, x ∈ A if and only if f(x) ∈ B. Two sets are: • 1-equivalent if and only if each is m-reducible to the other by one-one reductions; • p-invertible equivalent if and only if each is m-reducible to the other by one-one, polynomial-time invertible reductions; and • p...
متن کاملThe Boolean Hierarchy and the Polynomial Hierarchy: a Closer Connection
We show that if the Boolean hierarchy collapses to level k, then the polynomial hierarchy collapses to BH3(k), where BH3(k) is the k th level of the Boolean hierarchy over Σ2 . This is an improvement over the known results [3], which show that the polynomial hierarchy would collapse to P [O(log . This result is significant in two ways. First, the theorem says that a deeper collapse of the Boole...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Computing
سال: 1988
ISSN: 0097-5397,1095-7111
DOI: 10.1137/0217080